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1. INTRODUCTION

A typical chess program contains three distinct elements: board description and move generation,

tree searching/pruning, and position evaluation. Several good descriptions of the necessary tables and

data structures to represent a chess board exist in readily available books [1, 2] and articles [3, 4].

Even so, there is no general agreement on the best or most efficient representation. From these tables

the move list for each position is generated. Sometimes theGenerate function produces all the feasi-

ble moves at once, with the advantage that they may be sorted and tried in the most probable order of

success. In small memory computers, on the other hand, the moves are produced one at a time. This

saves space and may be quicker if an early move refutes the current line of play. Since only limited

sorting is possible (captures might be generated first) the searching efficiency is generally lower, how-

ev er. Rather than re-address these issues, first-time builders of a chess program are well advised to

follow Larry Atkin’s excellent Pascal-based model [5].

Perhaps the most important part of a chess program is theEvaluate function invoked at the max-

imum depth of search to assess the merits of the moves, many of which are capturing or forcing moves

that are not ‘‘dead.’’ Typically a limited search (called a quiescence search) must be carried out to

determine the unknown potential of such active moves. The evaluation process estimates the value of

chess positions that cannot be fully explored. In the simplest caseEvaluate only counts the material

difference, but for superior play it is also necessary to measure many positional factors, such as pawn

structures. These aspects are still not formalized, but adequate descriptions by computer chess practi-

tioners are available in books [2, 6].

In the area of searching and pruning, all chess programs fit the following general pattern. A full

width ‘‘exhaustive’’ search (all moves are considered) is done at the first few layers of the game tree.

At depths beyond this exhaustive region some form of selective search is used. Typically, unlikely or

unpromising moves are simply dropped from the move list. More sophisticated programs select those

discards based on an extensive analysis. Unfortunately, this type of forward pruning is known to be

error prone and dangerous; it is attractive because of the big reduction in tree size that ensues. Finally,
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at some maximum depth of search, the evaluation function is invoked; that in turn usually entails a fur-

ther search of designated moves like captures. Thus all programs employ a model with an implied

tapering of the search width, as variations are explored more and more deeply. What differentiates one

program from another is the quality of the evaluation, and the severity with which the tapering opera-

tion occurs. This paper concentrates on the tree searching and pruning aspects, especially those which

are well formulated and have provable characteristics.

2. COMPONENTS OF SEARCH

Since most chess programs examine large trees, a depth-first search is commonly used. That is,

the first branch to an immediate successor of the current node is recursively expanded until a leaf node

(a node without successors) is reached. The remaining branches are then considered as the search pro-

cess backs up to the root. Other expansion schemes are possible and the domain is fruitful for testing

new search algorithms. Since computer chess is well defined, and absolute measures of performance

exist, it is a useful test vehicle for measuring algorithm efficiency. In the simplest case, the best algo-

rithm is the one that visits fewest nodes when determining the true value of a tree. For a two-person

game-tree, this value, which is a least upper bound on the score (or merit) for the side to move, can be

found through a minimax search. In chess, this so called minimax value is a combination of both

‘‘MaterialBalance’’ (i.e., the difference in value of the pieces held by each side) and ‘‘StrategicBal-

ance’’ (e.g., a composite measure of such things as mobility, square control, pawn formation structure

and king safety) components. Normally,Evaluate computes these components in such a way that the

MaterialBalance dominates all positional factors.

2.1. Minimax Search

For chess, the nodes in a two-person game-tree represent positions and the branches correspond

to moves. The aim of the search is to find a path from the root to the highest valued leaf node that can

be reached, under the assumption of best play by both sides. To represent a level in the tree (that is, a

play or half move) the term ‘‘ply’’ was introduced by Arthur Samuel in his major paper on machine

learning [7]. How that word was chosen is not clear, perhaps as a contraction of ‘‘play’’ or maybe by

association with forests as in layers of plywood. In either case it was certainly appropriate and it has

been universally accepted.

A true minimax search of a game tree may be expensive since every leaf node must be visited.

For a uniform tree with exactly W moves at each node, there areW D nodes at the layer of the tree that

is D ply from the root. Nodes at this deepest layer will be referred to as terminal nodes, and will serve

as leaf nodes in our discussion. Some games, like Fox and Geese [8], produce narrow trees (fewer

than 10 branches per node) that can often be solved exhaustively. In contrast, chess produces bushy

trees (average branching factor, W, of about 35 moves [9]). Because of the size of the game tree, it is
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not possible to search until a mate or stalemate position (a true leaf node) is reached, so some maxi-

mum depth of search (i.e., a horizon) is specified. Even so, an exhaustive search of all chess game

trees involving more than a few moves for each side is impossible. Fortunately the work can be

reduced, since it can be shown that the search of some nodes is unnecessary.

2.2. The Alpha-Beta (α -β ) Algorithm

As the search of the game tree proceeds, the value of the best terminal node found so far

changes. It has been known since 1958 that pruning was possible in a minimax search [10], but

according to Knuth and Moore the ideas go back further, to John McCarthy and his group at MIT. The

first thorough treatment of the topic appears to be Brudno’s 1963 paper [11]. Theα -β algorithm

employs lower (α ) and upper (β ) bounds on the expected value of the tree. These bounds may be used

to prove that certain moves cannot affect the outcome of the search, and hence that they can be pruned

or cut off. As part of the early descriptions about how subtrees were pruned, a distinction between

deep and shallow cut-offs was made. Some versions of theα -β algorithm used only a single bound

(α ), and repeatedly reset theβ bound to infinity, so that deep cut-offs were not achieved. To correct

this flaw, Knuth and Moore introduced a recursive algorithm called F2 [12], and used it to prove prop-

erties about theα -β algorithm. A ‘‘negamax’’ framework was also employed whose primary advan-

tage is that by always passing back the negative of the subtree value, only maximizing operations are

needed. In Figure 1, Pascal-like pseudo code is used to present ourα -β function, AB, in the same

negamax framework. AReturn statement has been introduced as the convention for exiting the func-

tion and returning the best subtree value or score. Omitted are details of the game-specific functions

Make andUndo (to update the game board),Generate (to find moves) andEvaluate (to assess termi-

nal nodes). In the pseudo code of Figure 1, the max(α ,score) operation represents Fishburn’s ‘‘fail-

soft’’ condition [13], and ensures that the best available value is returned (rather than anα /β bound),

ev en if it lies outside theα -β window. This idea is usefully employed in some of the newer refine-

ments to theα -β algorithm.
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FUNCTION AB (p : position;α , β , depth : integer) : integer;
{ p is pointer to the current node }
{ α andβ are window bounds }
{ depth is the remaining search length }
{ the value of the subtree is returned }

VAR score, j, value : integer;
posn : ARRAY [1..MAXWIDTH] OF position;

{ Note: depth must be positive }
BEGIN
IF depth = 0 THEN { horizon node, maximum depth? }

Return(Evaluate(p));

posn := Generate(p); { point to successor positions }
IF empty(posn) THEN { leaf, no moves? }

Return(Evaluate(p));
{ find score of best variation }

score := -∞;
FOR j := 1 TO sizeof(posn) DO BEGIN

Make(posn[j]); { make current move }
value := -AB (posn[j], -β , -max(α ,score), depth-1);
IF (value > score) THEN { note new best score }

score := value;
Undo(posn[j]); { retract current move }
IF (score≥ β ) THEN { a cut-off? }

GOTO done;
END ;

done:
Return(score);

END ;

Figure 1: Depth-limited Alpha-Beta Function.
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(−β , −5)
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(α , β )

p depth = 3
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Figure 2: The Effects of α − β Pruning.

Although tree-searching topics involving pruning appear routinely in standard Artificial Intelli-

gence texts, chess programs remain the major application for theα -β algorithm. In the texts, a typical
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discussion about game-tree search is based on alternate use of minimizing and maximizing operations.

In practice, the negamax approach is preferred, since the programming is simpler. Figure 2 contains a

small 3-ply tree in which a Dewey-decimal scheme is used to label the nodes, so that the node name

carries information about the path back to the root node. Thus p.2.1.2 is the root of a hidden subtree

whose value is shown as 7 in Figure 2. Also shown at each node of Figure 2 is the initial alpha-beta

window that is employed by the search. Note that successors to node p.1.2 are searched with an initial

window of (α ,5). Since the value of node p.1.2.1 is 6, which is greater than 5, a cut-off is said to occur,

and node p.1.2.2 is not visited by theα -β algorithm.

2.3. Minimal Game Tree

If the ‘‘best’’ move is examined first at every node, the minimax value is obtained from a traver-

sal of the minimal game tree. This minimal tree is of theoretical importance since its size is a lower

bound on the search. For uniform trees of width W branches per node and a search depth of D ply,

Knuth and Moore provide the most elegant proof that there are

W



D

2

 + W




D

2

 − 1

terminal nodes in the minimal game tree [12], where x is the smallest integer≥ x, and  x is the

largest integer≤ x. Since such a terminal node rarely has no successors (i.e., is not a leaf) it is also

called a horizon node, with D the distance from the root node to the horizon [14].

2.4. Aspiration Search

An α -β search can be carried out with the initial bounds covering a narrow range, one that spans

the expected value of the tree. In chess these bounds might be (MaterialBalance-Pawn, MaterialBal-

ance+Pawn). If the minimax value falls within this range, no additional work is necessary and the

search usually completes in measurably less time. The method was analyzed by Brudno [11], referred

to by Berliner [15], and experimented with by Gillogly [16], but was not consistently successful. A

disadvantage is that sometimes the initial bounds do not enclose the minimax value, in which case the

search must be repeated with corrected bounds, as the outline of Figure 3 shows. Typically these fail-

ures occur only when material is being won or lost, in which case the increased cost of a more thor-

ough search is acceptable. Because these re-searches use a semi-infinite window, from time to time

people experiment with a ‘‘sliding window’’ of (V, V+PieceValue), instead of (V, +∞). This method is

often effective, but can lead to excessive re-searching when mate or large material gain/loss is in the

offing.
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{ Assume V = estimated value of position p, and }
{ e = expected error limit }
{ depth = current distance to horizon }
{ p = position being searched }

α := V - e; { lower bound }
β := V + e; { upper bound }

V := AB (p, α , β , depth);
IF (V ≥ β ) THEN { failing high }

V := AB (p, V, +∞, depth)
ELSE
IF (V ≤ α ) THEN { failing low }

V := AB (p, -∞, V, depth);

{ A successful search has now been completed }
{ V now holds the current value of the tree }

Figure 3: Narrow Window Aspiration Search.

After 1974, ‘‘iterated aspiration search’’ came into general use, as follows: ‘‘Before each itera-

tion starts,α and β are not set to -∞ and +∞ as one might expect, but to a window only a few pawns

wide, centered roughly on the final score [value] from the previous iteration (or previous move in the

case of the first iteration). This setting of ‘high hopes’ increases the number ofα -β cutoffs’’ [6].

Even so, although aspiration searching is still popular and has much to commend it, minimal window

search seems to be more efficient and requires no assumptions about the choice of aspiration window

[17].

2.5. Quiescence Search

Even the earliest papers on computer chess recognized the importance of evaluating only those

positions which are ‘‘relatively quiescent’’ [18] or ‘‘dead’’ [19]. These are positions which can be

assessed accurately without further search. Typically they hav e no moves, such as checks, promotions

or complex captures, whose outcome is unpredictable. Not all the moves at horizon nodes are quies-

cent (i.e., lead immediately to dead positions), so some must be searched further. To limit the size of

this so called quiescence search, only dynamic moves are selected for consideration. These might be

as few as the moves that are part of a single complex capture, but can expand to include all capturing

moves and all responses to check [20]. Ideally, passed pawn moves (especially those close to promo-

tion) and selected checks should be included [21, 22], but these are often only examined in computa-

tionally simple endgames. The goal is always to clarify the node so that a more accurate position eval-

uation is made. Despite the obvious benefits of these ideas, the realm of quiescence search is unclear,

because no theory for selecting and limiting the participation of moves exists. Present quiescent

search methods are attractive; they are simple, but from a chess standpoint leave much to be desired,
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especially when it comes to handling forking moves and mate threats. Even though the current

approaches are reasonably effective, a more sophisticated method is needed for extending the search,

or for identifying relevant moves to participate in the selective quiescence search [23]. On the other

hand, some programs manage quite well without quiescence search, using direct computation to evalu-

ate the exchange of material [24].

2.6. Horizon Effect

An unresolved defect of chess programs is the insertion of delaying moves that cause any

inevitable loss of material to occur beyond the program’s horizon (maximum search depth), so that the

loss is hidden [14]. The ‘‘horizon effect’’ is said to occur when the delaying moves unnecessarily

weaken the position or give up additional material to postpone the eventual loss. The effect is less

apparent in programs with more knowledgeable quiescence searches [23], but all programs exhibit this

phenomenon. There are many illustrations of the difficulty; the example in Figure 4, which is based

on a study by Kaindl [23], is clear. Here a program with a simple quiescence search involving only

captures would assume that any blocking move sav esthe queen. Even an 8-ply search (..., Pb2; Bxb2,

Pc3; Bxc3, Pd4; Bxd4, Pe5; Bxe5) might not show the inevitable, ‘‘thinking’’ that the queen has been

saved at the expense of four pawns! Thus programs with a poor or inadequate quiescence search suf-

fer more from the horizon effect. The best way to provide automatic extension of non-quiescent posi-

tions is still an open question, despite proposals such as bandwidth heuristic search [25].

:: :: Rb Kb

:: :: Qw Pb Qb

:: :: Pb :: ::

:: Pb :: Pb :: Pw

:: Pb :: Pw ::

:: Pb :: Pw ::

:: Pw :: ::

Bw Kw :: :: ::

Black’s Move

Figure 4: The Horizon Effect.
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3. ALPHA-BETA ENHANCEMENTS

3.1. Minimal Window Search

Theoretical advances, such as Scout [26] and the comparable minimal window search techniques

[13, 17, 27] came in the late 1970’s. The basic idea behind these methods is that it is cheaper to prove

a subtree inferior, than to determine its exact value. Even though it has been shown that for bushy

trees minimal window techniques provide a significant advantage [17], for random game trees it is

known that even these refinements are asymptotically equivalent to the simplerα -β algorithm. Bushy

trees are typical for chess and so many contemporary chess programs use minimal window techniques

through the Principal Variation Search (PVS) algorithm [28]. In Figure 5, a Pascal-like pseudo code is

used to describe PVS in a negamax framework. The chess-specific functionsMake andUndo have

been omitted for clarity. Also, the original version of PVS has been improved by using Reinefeld’s

depth=2 idea [29], which shows that re-searches need only be performed when the remaining depth of

search is greater than 2. This point, and the general advantages of PVS, is illustrated by Figure 6,

which shows the traversal of the same tree presented in Figure 2. Note that using narrow windows to

prove the inferiority of the subtrees leads to the pruning of an additional horizon node (the node

p.2.1.2). This is typical of the savings that are possible, although there is a risk that some subtrees will

have to be re-searched.
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FUNCTION PVS (p : position;α , β , depth : integer) : integer;
{ p is pointer to the current node }
{ α andβ are window bounds }
{ depth is the remaining search length }
{ the value of the subtree is returned }

VAR score, j, value : integer;
posn : ARRAY [1..MAXWIDTH] OF position;

{ Note: depth must be positive }
BEGIN

IF depth = 0 THEN { horizon node, maximum depth? }
Return(Evaluate(p));

posn := Generate(p); { point to successor positions }
IF empty(posn) THEN { leaf, no moves? }

Return(Evaluate(p));
{ principal variation? }

score := -PVS (posn[1], -β , -α , depth-1);
FOR j := 2 TO sizeof(posn) DO BEGIN

IF (score≥ β ) THEN { cutoff? }
GOTO done;

α := max(score,α ); { fail-soft condition }
{ zero-width minimal-window search }

value := -PVS (posn[j], -α -1, -α , depth-1);
IF (value > score) THEN { re-search, if ‘fail-high‘ }

IF (α < value) AND (value <β ) AND (depth > 2) THEN
score := -PVS (posn[j], -β , -value, depth-1)

ELSE score := value;
END ;

done:
Return(score);

END ;

Figure 5: Minimal Window Principal Variation Search.

2. 1. 22. 1. 11. 2. 21. 2. 1
depth = 0

(5, 6)

2. 2

(5, 6)

2. 1

(4, 5)

1. 2 depth = 1

(α , β )

1. 1

(−6,−5)

2depth = 2

(−β , −α )

1

(α , β )

p depth = 3

23791645

Figure 6: The Effects of PVS Pruning.
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3.2. Forward Pruning

To reduce the size of the tree that should be traversed and to provide a weak form of selective

search, techniques that discard some branches have been tried. For example, tapered N-best search

[30, 31] considers only the N-best moves at each node, where N usually decreases with increasing

depth of the node from the root of the tree. As noted by Slate and Atkin ‘‘The major design problem

in selective search is the possibility that the lookahead process will exclude a key move at a low lev el

in the game tree.’’ Good examples supporting this point are found elsewhere [32]. Other methods,

such as marginal forward pruning [33] and the gamma algorithm [34], omit moves whose immediate

value is worse than the current best of the values from nodes already searched, since the expectation is

that the opponent’s move isonly going to make things worse. Generally speaking these forward prun-

ing methods are not reliable and should be avoided. They hav e no theoretical basis, although it may be

possible to develop statistically sound methods which use the probability that the remaining moves are

inferior to the best found so far.

One version of marginal forward pruning, referred to as razoring [35], is applied near horizon

nodes. The expectation in all forward pruning is that the side to move can improve the current value,

so it may be futile to continue. Unfortunately there are cases when the assumption is untrue, for

instance in zugzwang positions. As Birmingham and Kent point out ‘‘the program defines zugzwang

precisely as a state in which every move available to one player creates a position having a lower value

to him (in its own evaluation terms) than the present bound for the position’’ [35]. Marginal pruning

may also break down when the side to move has more than one pieceen prise (e.g., is forked), and so

the decision to stop the search must be applied cautiously.

Despite these disadvantages, there are sound forward pruning methods and there is every incen-

tive to dev elop more, since this is one way to reduce the size of the tree traversed, perhaps to less than

the minimal game tree. A good prospect is through the development of programs that can deduce

which branches can be neglected, by reasoning about the tree they traverse.

3.3. Move Ordering Mechanisms

For efficiency (traversal of a smaller portion of the tree) the moves at each node should be

ordered so that the more plausible ones are searched soonest. Various ordering schemes may be used.

For example, ‘‘since the refutation of a bad move isoften a capture, all captures are considered first in

the tree, starting with the highest valued piece captured’’ [20]. Special techniques are used at interior

nodes for dynamically re-ordering moves during a search. In the simplest case, at every level in the

tree a record is kept of the moves that have been assessed as being best, or good enough to refute a line

of play and so cause a cut-off. As Gillogly puts it: ‘‘If a move is arefutation for one line, it may also

refute another line, so it should be considered first if it appears in the legal move list’’ [20]. Referred

to as the killer heuristic, a typical implementation maintains only the two most frequently occurring
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‘‘killers’’ at each level [6].

Recently a more powerful and more general scheme for re-ordering moves at an interior node has

been introduced. Schaeffer’s history heuristic ‘‘maintains a history for every legal move seen in the

search tree. For each move, a record of the move’s ability to cause a refutation is kept, regardless of

the line of play’’ [36]. At an interior node the best move isthe one that either yields the highest score

or causes a cut-off. Many implementations are possible, but a pair of tables (each of 64x64 entries) is

enough to keep a frequency count of how often a particular move (defined as a from-to square combi-

nation) is best for each side. The available moves are re-ordered so that the most successful ones are

tried first. An important property of this so called history table is the sharing of information about the

effectiveness of moves throughout the tree, rather than only at nodes at the same search level. The

idea is that if a move isfrequently good enough to cause a cut-off, it will probably be effective when-

ev er it can be played.

3.4. Progressive and Iterative Deepening

The term progressive deepening was used by de Groot [9] to encompass the notion of selectively

extending the main continuation of interest. This type of selective expansion is not performed by pro-

grams employing theα -β algorithm, except in the sense of increasing the search depth by one for each

checking move onthe current continuation (path from root to horizon), or by performing a quiescence

search from horizon nodes until dead positions are reached.

In the early 1970’s sev eral people tried a variety of ways to control the exponential growth of the

tree search. A simple fixed depth search is inflexible, especially if it must be completed within a spec-

ified time. Jim Gillogly, author of theTech chess program [20], coined the term iterative deepening to

distinguish a full-width search to increasing depths from the progressively more focused search

described by de Groot. About the same time David Slate and Larry Atkin sought a better time control

mechanism, and introduced the notion of an iterated search [6] for carrying out a progressively deeper

and deeper analysis. For example, an iterated series of 1-ply, 2-ply, 3-ply ... searches is carried out,

with each new search first retracing the best path from the previous iteration and then extending the

search by one ply. Early experimenters with this scheme were surprised to find that the iterated search

often required less time than an equivalent direct search. It is not immediately obvious why iterative

deepening is effective; as indeed it is not, unless the search is guided by the entries in a memory table

(such as a transposition or refutation table) which holds the best moves from subtrees traversed during

the previous iteration. All the early experimental evidence indicated that the overhead cost of the pre-

liminary D-1 iterations was often recovered through a reduced cost for the D-ply search. Later the

efficiency of iterative deepening was quantified to assess various refinements, especially memory table

assists [17]. Today the terms progressive and iterative deepening are often used synonymously.
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One important aspect of these searches is the role played by re-sorting root node moves between

iterations. Because there is only one root node, an extensive positional analysis of the moves can be

done. Even ranking them according to consistency with continuing themes or a long range plan is pos-

sible. However, in chess programs which rate terminal positions primarily on material balance many

of the moves (subtrees) will return with equal scores. Thus at least a stable sort should be used to pre-

serve an initial order of preferences. Even so, that may not be enough. In the early iterations moves are

not assessed accurately. Some initially good moves may return with a poor expected score for one or

two iterations. Later the score may improve, but the move could remain at the bottom of a list of all

moves of equal score -- not near the top as the initial ranking recommended. Should this move ulti-

mately prove to bebest, then far too many moves may precede it at the discovery iteration, and dispos-

ing of those moves may be inordinately expensive. Experience with our test data has shown that

among moves of equal score the partial ordering should be based on an extensive pre-analysis at the

root node, and not on the vagaries of a sorting algorithm.

3.5. Transposition and Refutation Tables

The results (score, best move, status) of the searches of nodes (subtrees) in the tree can be held

in a large direct access table [6, 28, 31]. Re-visits of positions that have been seen before are common,

especially if a minimal window search is used. When a position is reached again, the corresponding

table entry serves three purposes. First, it may be possible to use the table score to narrow the (α ,β )

window bounds. Secondly, the best move that was found before can be tried immediately. It had

probably caused a cut-off and may do so again, thus eliminating the need to generate the remaining

moves. Here the table entry is being used as a move re-ordering mechanism. Finally, the primary pur-

pose of the table is to enable recognition of move transpositions that have lead to a position (subtree)

that has already been completely examined. In such a case there is no need to search again. This use

of a transposition table is an example of exact forward pruning. Many programs also store their open-

ing book in a way that is compatible with access to the transposition table. In this way they are pro-

tected against the myriad of small variations in move order that are common in the opening.

By far the most popular table-access method is the one proposed by Zobrist [37]. He observed

that a chess position constitutes placement of up to 12 different piece types {K,Q,R,B,N,P,-K ... -P} on

to a 64-square board. Thus a set of 12x64 unique integers (plus a few more foren passant and

castling privileges), {Ri}, may be used to represent all the possible piece/square combinations. For

best results these integers should be at least 32 bits long, and be randomly independent of each other.

An index of the position may be produced by doing an exclusive-or on selected integers as follows:

P j = Ra xor Rb xor . . . xor Rx

where theRa etc. are integers associated with the piece placements. Movement of a ‘‘man’’ from the
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piece-square associated withR f to the piece-square associated withRt yields a new index

Pk = (P j xor R f ) xor Rt

By using this index as a hash key to the transposition table, direct and rapid access is possible. For

further speed and simplicity, and unlike a normal hash table, only a single probe is made. More elabo-

rate schemes have been tried, but often the cost of the increased complexity of managing the table

undermines the benefits from improved table usage. Table 1 shows the usual fields for each entry in

the hash table.Flag specifies whether the entry corresponds to a position that has been fully searched,

or whetherScore can only be used to adjust theα -β bounds. Height ensures that the value of a fully

evaluated position is not used if the subtree length is less than the current search depth, ratherMove is

played instead. Figure 7 contains pseudo code showing usage of the entriesMove, Score, Flag and

Height. Not shown there are functionsRetrieve andStore , which access and update the transposition

table.

Lock To ensure the table entry corresponds to
the tree position.

Move Preferred move inthe position, determined
from a previous search.

Score Value of subtree, computed previously.
Flag Is the score an upper bound, a lower bound

or a true score?
Height Length of subtree upon which score is based.

Table 1: Typical Transposition Table Entry.
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FUNCTION AB (p : position;α , β , depth : integer) : integer;
VAR value, height, score : integer;

j, move : 1..MAXWIDTH ;
flag : (VALID, LBOUND, UBOUND);
posn : ARRAY [1..MAXWIDTH] OF position;

BEGIN
{ Seek score and best move for the current position }

Retrieve(p, height, score, flag, move);

{ height is the effective subtree length. }
{ height < 0 - position not in table. }
{ height ≥ 0 - position in table. }

IF (height≥ depth) THEN BEGIN
IF (flag = VALID) THEN

Return(score); { Forward prune, fully seen before }
IF (flag = LBOUND) THEN

α := max(α , score); { Narrow the window }
IF (flag = UBOUND) THEN

β := min(β , score); { Narrow the window }
IF (α ≥ β ) THEN

Return(score); { Forward prune, no further interest }
END;

{ Note: update of theα or β bound }
{ is not valid in a selective search. }
{ If score in table insufficient to end }
{ search, try best move from table first }
{ before generating other moves. }

IF (depth = 0) THEN { horizon node? }
Return(Evaluate(p));

IF (height≥ 0) THEN BEGIN
{ Re-order, try ’move’ from table }

score := -AB (posn[move], -β , -α , depth-1);
IF (score≥ β ) THEN

GOTO done; { Success, omit move generation }
END ELSE score := -∞;

{ No cut-off, produce move list }
posn := Generate(p);
IF empty(posn) THEN { leaf, mate or stalemate? }

Return(Evaluate(p));

FOR j := 1 TO sizeof(posn) DO
IF j ≠ move THEN BEGIN

{ using fail-soft condition }
value := -AB (posn[j], -β , -max(α ,score), depth-1);
IF (value > score) THEN BEGIN

score := value;
move := j;
IF (score≥ β ) THEN

GOTO done; { Normalβ cut-off }
END;

END;
done:

flag := VALID;
IF (score≤ α ) THEN

flag := UBOUND;
IF (score≥ β ) THEN

flag := LBOUND;
IF (height≤ depth) THEN { update hash table }

Store(p, depth, score, flag, move);
Return(score);

END;

Figure 7: Alpha-Beta Search with Transposition Table.
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A transposition table also identifies the preferred move sequences used to guide the next iteration

of a progressive deepening search. Only the move isimportant in this phase, since the subtree length

is usually less than the remaining search depth. Transposition tables are particularly advantageous to

methods like PVS, since the initial minimal window search loads the table with useful lines that are

used in the event of a re-search. On the other hand, for deeper searches, entries are commonly lost as

the table is overwritten, even though the table may contain more than a million entries [38]. Under

these conditions a small fixed size transposition table may be overused (overloaded) until it is ineffec-

tive as a means of storing the continuations. To overcome this fault, a special table for holding these

main continuations (the refutation lines) is also used. The table has W entries containing the D ele-

ments of each continuation. For shallow searches (D < 6) a refutation table guides a progressive deep-

ening search just as well as a transposition table. Thus a refutation table is the preferred choice of

commercial systems or users of memory limited processors. A small triangular workspace (DxD/2

entries) is needed to hold the current continuation as it is generated, and these entries in the workspace

can also be used as a source of killer moves [39].

3.6. Interpretation

The various terms and techniques described have evolved over the years, with the superiority of

one method over another often depending on which elements are combined. Iterative deepening ver-

sions of aspiration and Principal Variation Search (PVS), along with transposition, refutation and his-

tory memory tables are all useful refinements to theα -β algorithm. Their relative performance is ade-

quately characterized by Figure 8. That graph was made from data gathered by a chess program ana-

lyzing the standard Bratko-Kopec positions [40] with a simple evaluation function. Other programs

may achieve slightly different results, reflecting differences in the evaluation function, but the relative

performance of the methods should not be affected. Normally, the basis of such a comparison is the

number of horizon nodes (also called bottom positions or terminal nodes) visited. Evaluation of these

nodes is usually more expensive than the predecessors, since a quiescence search is carried out there.

However, these horizon nodes are of two types, ALL nodes, where every move isgenerated and evalu-

ated, and CUT nodes from which only as many moves as necessary to cause a cut-off are assessed

[41]. For the minimal game tree these nodes can be counted, but there is no simple formula for the

generalα -β search case. Thus the basis of comparison for Figure 8 is the amount of CPU time

required for each algorithm, rather than the leaf node count. Although a somewhat different graph is

produced as a consequence, the relative performance of the methods does not change. The CPU com-

parison assesses the various enhancements more usefully, and also makes them look even better than

on a node count basis. Analysis of the Bratko-Kopec positions requires the search of trees whose

nodes have an average width (branching factor) of W = 34 branches. Thus it is possible to use the for-

mula for horizon node count in a uniform minimal game tree to provide a lower bound on the search
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size, as drawn in Figure 8. Since search was not possible for this case, the trace represents the % per-

formance relative to directα -β , but on a node count basis. Even so, the trace is a good estimate of the

lower bound on the time required.

One feature of our simple chess program is that an extensive static analysis is done at the root

node. The order this analysis provides to the initial moves is retained from iteration to iteration among

moves which return the same ‘‘value.’’ At the other interior nodes, if the transposition and/or refuta-

tion table options are in effect and either provides a valid move, that move istried first. Should a cut-

off occur the need for a move generation is eliminated. Otherwise the provisional ordering simply

places safe captures ahead of other moves. If the history table is enabled, then the move list is re-

ordered to ensure that the most frequently effective moves from elsewhere in the tree are tried soonest.

For the results presented in Figure 8, transposition, refutation and heuristic tables were in effect only

for the traces whose label is extended with +trans, +ref and/or +hist respectively. Also, the transposi-

tion table was fixed at eight thousand entries, so the effects of table overloading may be seen when the

search depth reaches 6-ply. Figure 8 shows that:

(a). Iterative deepening costs little over a direct search, and so can be effectively used as a time con-
trol mechanism. In the graph presented an average overhead of only 5% is shown, even though
memory assists like transposition, refutation or history tables were not used.

(b). When iterative deepening is used, PVS is superior to aspiration search.

(c). A refutation table is a space efficient alternative to a transposition table for guiding the early iter-
ations.

(d). Odd-plyα -β searches are more efficient than even-ply ones.

(e). Transposition table size must increase with depth of search, or else too many entries will be over-
laid before they can be used. The individual contributions of the transposition table, through
move re-ordering, bounds narrowing and forward pruning are not brought out in this study.

(f). Transposition and/or refutation tables combine effectively with the history heuristic, achieving
search results close to the minimal game tree for odd-ply search depths.
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Odd-plyα -β searches are

Figure 8: Time Comparison of Alpha-Beta Enhancements
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4. OVERVIEW

A model chess program has three phases to its search. Typically, from the root node an exhaus-

tive examination of layers of moves occurs, and this is followed by a phase of selective searches up to

a limiting depth (the horizon). Programs which have no selective search component might be termed

‘‘brute force,’’ while those lacking an initial exhaustive phase are often selective only in the sense that
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they employ some form of marginal forward pruning. An evaluation function is applied at the horizon

nodes to assess the material balance and the structural properties of the position (e.g., relative place-

ment of pawns). To aid in this assessment a third phase is used, a variable depth quiescence search of

those moves which are not dead (i.e., cannot be accurately assessed). It is the quality of this quies-

cence search which controls the severity of the horizon effect exhibited by all chess programs. Since

the evaluation function is expensive, the best pruning must be used. All major programs use the ubiq-

uitousα -β algorithm and one of its refinements like aspiration search or principal variation search,

along with some form of iterative deepening.

These methods are significantly improved by dynamic move re-ordering mechanisms like the

killer heuristic, refutation tables, transposition tables and the history heuristic. Forward pruning meth-

ods are also sometimes effective. The transposition table is especially important because it improves

the handling of endgames where the potential for a draw by repetition is high. Like the history heuris-

tic, it is also a powerful predictor of cut-off moves, thus saving a move generation. The merits of these

methods has been encapsulated in a single figure showing their performance relative to a directα -β

search.
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